By Andrew Davie (adapted by Duane Alan Hahn, a.k.a. Random Terrain)
As an Amazon Associate I earn from qualifying purchases.
Page Table of Contents
Original Session
One of the joys of writing '2600 programs involves the quest for efficiency—both in processing time used, and in ROM space required for the code. Every now and then, modern-day '2600 programmers will become obsessed with some fairly trivial task and try to see how efficient they can make it.
If you were about to go up on the Space Shuttle, you wouldn't expect them to just put in the key, turn it on, and take off. You'd like the very first thing they do is to make sure that all those switches are set to their correct positions. When our Atari 2600 (which, I might point out in a tenuous link to the previous sentence, is of the same vintage as the Space Shuttle) powers-up, we should assume that the 6502, RAM and TIA (and other systems) are in a fairly unknown state. It is considered good practice to initialize these systems. Unless you really, *really* know what you're doing, it can save you problems later on.
At the end of this session I'll present a highly optimized (and best of all, totally obscure ) piece of code which manages to initialize the 6502, all of RAM *and* the TIA using just 9 bytes of code-size. That's quite amazing, really. But first, we're going to do it the 'long' way, and learn a little bit more about the 6502 while we're doing it.
We've already been introduced to the three registers of the 6502—A, X, and Y. X and Y are known as index registers (we'll see why, very soon) and A is our accumulator—the register used to do most of the calculations (addition, subtraction, etc).
Let's have a look at the process of clearing (writing 0 to) all of our RAM. Our earlier discussions of the memory architecture of the 6502 showed that the '2600 has just 128 bytes ($80 bytes) of RAM, starting at address $80. So, our RAM occupies memory from $80 - $FF inclusive. Since we know how to write to memory (remember the "stx COLUBK" we used to write a color to the TIA background color register), it should be apparent that we could do this…
lda #0 ; load the value 0 into the accumulator sta $80 ; store accumulator to location $80 sta $81 ; store accumulator to location $81 sta $82 ; store accumulator to location $82 sta $83 ; store accumulator to location $83 sta $84 ; store accumulator to location $84 sta $85 ; store accumulator to location $85 ; 119 more lines to store 0 into location $86 - $FC. . . sta $FD ; store accumulator to location $FD sta $FE ; store accumulator to location $FE sta $FF ; store accumulator to location $FF
You're right, that's ugly! The code above uses 258 bytes of ROM (2 bytes for each store, and 2 for the initial accumulator load). We can't possibly afford that—and especially since I've already told you that it's possible to initialize the 6502 registers, clear RAM, *AND* initialize the TIA in just 9 bytes total!
The index registers have their name for a reason. They are useful in exactly the situation above, where we have a series of values we want to read or write to or from memory. Have a look at this next bit of code, and we'll walk through what it does…
ldx #0 lda #0 ClearRAM sta $80,x inx cpx #$80 bne ClearRAM
Firstly, this code is nowhere-near efficient, but it does do the same job as our first attempt and uses only 11 bytes. It achieves this saving by performing the clear in a loop, writing 0 (the accumulator) to one RAM location every iteration. The key is the "sta $80,x" line. In this "addressing mode", the 6502 adds the destination address ($80 in this example—remember, this is the start of RAM) to the current value of the X register—giving it a final address—and uses that final address as the source/destination for the operation.
We have initialized X to 0, and increment it every time through the loop. The line "cpx #$80" is a comparison, which causes the 6502 to check the value of X against the number $80 (remember, we have $80 bytes of RAM, so this is basically saying "has the loop done 128 ($80) iterations yet?". The next line "bne ClearRAM" will transfer program flow back to the label "ClearRAM" every time that comparison returns "no". The end result being that the loop will iterate exactly 128 times, and that the indexing will end up writing to 128 consecutive memory locations starting at $80.
ldx #$80 lda #0 ClearRAM sta 0,x inx bne ClearRAM
Well, that's not a LOT different, but we're now using only 9 bytes to clear RAM—somehow we've managed to get rid of that comparison! And how come we're writing to 0,x not $80,x? All will be revealed…
When the 6502 performs operations on registers, it keeps track of certain properties of the numbers in those registers. In particular, it has internal flags which indicate if the number it last used was zero or non-zero, positive or negative, and also various other properties related to the last calculation it did. We'll get to all of that later. All of these flags are stored in an 8-bit register called the "flags register". We don't have easy direct access to this register, but we do have instructions which base their operation on the flags themselves.
We've already used one of these operations—the "bne ClearRAM" we used in our earlier version of the code. This instruction, as noted "will transfer program flow back to the label "ClearRAM" every time that comparison returns "no". The comparison returns "no" by setting the zero/non-zero flag in the processor's flags register!
In actuality, this zero/non-zero flag is also set or cleared upon a load to a register, an increment or decrement of register or memory, and whenever a calculation is done on the accumulator. Whenever a value in these circumstances is zero, then the zero flag is set. Whenever the result is non-zero, the zero flag is cleared. So, we don't even need to compare for anything being 0—as long as we have just done one of the operations mentioned (load, increment, etc)—then we know that the zero flag (and possibly others) will tell us something about the number. The 6502 documentation gives extensive information for all instructions about what flags are set/cleared, under what circumstance.
We briefly discussed how index registers, only holding 8-bit values "wrap-around" from $FF (%11111111) to 0 when incremented, and from 0 to $FF when decremented. Our code above is using this "trick" by incrementing the X-register and using the knowledge that the zero-flag will always be non-zero after this operation, unless X is 0. And X will only be 0 if it was previously $FF. Instead of having X be a "counter" to give 128 iterations, this time we're using it as the actual address and looping it from $80 (the start of RAM) to $FF (the end of RAM) + 1. SO our store (which, remember, takes the address in the instruction, adds the value of the X register and uses that as the final address) is now "sta 0,x". Since X holds the correct address to write to, we are adding 0 to that.
I would *highly* recommend that you don't worry too much about this sort of optimization while you're learning. The version with the comparison is perfectly adequate, safe, and easy to understand. But sometimes you find that you do need the extra cycles or bytes (the optimized version, above, is 160 cycles faster—and that's 160x3 color clocs = 480 color clocks = more than two whole scanlines !! quicker). So you can see how crucial timing can be—by taking out a single instruction (the "cpx #$80") in a loop, and rearranging how our loop counted, we saved more than two scanlines—(very) roughly 1% of the total processing time available in one frame of a TV picture!
Initializing the TIA is a similar process to initializing the RAM—we just want to write 0 to all memory locations from 0 to $7F (where the TIA lives!). This is safe—trust me—and we don't really need to know what we're writing to at this stage, just that after doing this the TIA will be nice and happy. We could do this in a second loop, similar to the first, but how about this…
ldx #0 lda #0 Clear sta $80,x ; clear a byte of RAM sta 0,x ; clear a byte of TIA register inx cpx #$80 bne Clear
That's a perfectly adequate solution. Easy to read and maintain, and reasonably quick. We could, however, take advantage of the fact that RAM and the TIA are consecutive in memory (TIA from 0 - $7F, immediately followed by RAM $80 - $FF) and do the clear in one go…
ldx #0 lda #0 Clear sta 0,x inx bne Clear
The above example uses 9 bytes, again, but now clears RAM and TIA in one 'go' by iterating the index register (which is the effective address when used in "sta 0,x") from 0 to 0 (ie: increments 256 times and then wraps back to 0 and the loop halts). This is starting to get into "elegant" territory, something the experienced guys strive for!
Furthermore, after this code has completed, X = 0 and A = 0—a nice known state for two of the 3 6502 registers.
That's all I'm going to explain for the initialization at this stage—we should insert this code just after the "Reset" label and before the "StartOfFrame" label. This would cause the code to be executed only on a system reset, not every frame (as, every frame, the code branches back to the "StartOfFrame" for the beginning of the next frame).
Before we end today's session, though, I thought I'd share the "magical" 9-byte system clear with you. There's simply no way that I would expect you to understand this bit of code at the moment—it pulls every trick in the book—but this should give you some taste of just how obscure a bit of code CAN be, and how beautifully elegant clever coding can do amazing things.
; CLEARS ALL VARIABLES, STACK ; INIT STACK POINTER ; ALSO CLEARS TIA REGISTERS ; DOES THIS BY "WRAPPING" THE STACK - UNUSUAL LDX #0 TXS PHA ; BEST WAY TO GET SP=$FF, X=0 TXA CLEAR PHA DEX BNE CLEAR ; 9 BYTES TOTAL FOR CLEARING STACK, MEMORY ; STACK POINTER NOW $FF, A=X==0
Though the above was a truly magical piece of code, I've since developed an EIGHT byte solution to the problem of clearing RAM and initializing the stack and registers.
ldx #0 txa Clear dex txs pha bne Clear
After the above, X=A=0, and all of RAM and the TIA has been initialized to 0, and the stack pointer is initialized to $FF. Amazing!
See you next time!
Other Assembly Language Tutorials
Be sure to check out the other assembly language tutorials and the general programming pages on this web site.
Amazon: Atari 2600 Programming (#ad)
Amazon: 6502 Assembly Language Programming (#ad)
Atari 2600 Programming for Newbies (#ad)
|
|
Session 2: Television Display Basics
Sessions 3 & 6: The TIA and the 6502
Session 5: Memory Architecture
Session 7: The TV and our Kernel
Session 9: 6502 and DASM - Assembling the Basics
Session 12: Initialization
Session 14: Playfield Weirdness
Session 15: Playfield Continued
Session 16: Letting the Assembler do the Work
Sessions 17 & 18: Asymmetrical Playfields (Parts 1 & 2)
Session 20: Asymmetrical Playfields (Part 3)
Session 22: Sprites, Horizontal Positioning (Part 1)
Session 22: Sprites, Horizontal Positioning (Part 2)
Session 23: Moving Sprites Vertically
Session 25: Advanced Timeslicing
How to get started writing 6502 assembly language. Includes a JavaScript 6502 assembler and simulator.
Atari Roots by Mark Andrews (Online Book)
This book was written in English, not computerese. It's written for Atari users, not for professional programmers (though they might find it useful).
Machine Language For Beginners by Richard Mansfield (Online Book)
This book only assumes a working knowledge of BASIC. It was designed to speak directly to the amateur programmer, the part-time computerist. It should help you make the transition from BASIC to machine language with relative ease.
The 6502 Instruction Set broken down into 6 groups.
Nice, simple instruction set in little boxes (not made out of ticky-tacky).
The Second Book Of Machine Language by Richard Mansfield (Online Book)
This book shows how to put together a large machine language program. All of the fundamentals were covered in Machine Language for Beginners. What remains is to put the rules to use by constructing a working program, to take the theory into the field and show how machine language is done.
An easy-to-read page from The Second Book Of Machine Language.
6502 Instruction Set with Examples
A useful page from Assembly Language Programming for the Atari Computers.
Continually strives to remain the largest and most complete source for 6502-related information in the world.
By John Pickens. Updated by Bruce Clark.
Guide to 6502 Assembly Language Programming by Andrew Jacobs
Below are direct links to the most important pages.
Goes over each of the internal registers and their use.
Gives a summary of whole instruction set.
Describes each of the 6502 memory addressing modes.
Describes the complete instruction set in detail.
HTMLified version.
Nick Bensema's Guide to Cycle Counting on the Atari 2600
Cycle counting is an important aspect of Atari 2600 programming. It makes possible the positioning of sprites, the drawing of six-digit scores, non-mirrored playfield graphics and many other cool TIA tricks that keep every game from looking like Combat.
How to Draw A Playfield by Nick Bensema
Atari 2600 programming is different from any other kind of programming in many ways. Just one of these ways is the flow of the program.
Cart Sizes and Bankswitching Methods by Kevin Horton
The "bankswitching bible." Also check out the Atari 2600 Fun Facts and Information Guide and this post about bankswitching by SeaGtGruff at AtariAge.
Atari 2600 programming specs (HTML version).
Atari 2600 Programming Page (AtariAge)
Links to useful information, tools, source code, and documentation.
Atari 2600 programming site based on Garon's "The Dig," which is now dead.
Includes interactive color charts, an NTSC/PAL color conversion tool, and Atari 2600 color compatibility tools that can help you quickly find colors that go great together.
The Atari 2600 Music and Sound Page
Adapted information and charts related to Atari 2600 music and sound.
A guide and a check list for finished carts.
A multi-platform Atari 2600 VCS emulator. It has a built-in debugger to help you with your works in progress or you can use it to study classic games. Stella finally got Atari 2600 quality sound in December of 2018. Until version 6.0, the game sounds in Stella were mostly OK, but not great. Now it's almost impossible to tell the difference between the sound effects in Stella and a real Atari 2600.
A very good emulator that can also be embedded on your own web site so people can play the games you make online. It's much better than JStella.
If assembly language seems a little too hard, don't worry. You can always try to make Atari 2600 games the faster, easier way with batari Basic.
I'm a money magnet. Good things happen to me. I get things done. I'm happy. I'm healthy. I'm smart. I'm creative. I'm a nice person. I'm successful. I'm good with money. I'm honest. I'm trustworthy. I'm responsible. I'm wise. I'm easygoing. I'm clear-minded. I'm sober. I'm calm. I'm thankful. I'm satisfied. I'm forgiving. I'm confident. I'm kind. I'm considerate. I'm likeable. I'm friendly. I'm loving. I'm loveable. I'm joyful. I'm playful. I'm full of energy. I'm fun to be around. I'm a good friend. I'm eternal. I'm powerful. I'm a being of light. I'm a spirit wearing a body.
Did you know that Trump's rushed Operation Warp Speed rona jab has less than one percent overall benefit? Some people call it the depopulation jab and it has many possible horrible side effects (depending on the lot number, concentration, and if it was kept cold). Remember when many Democrats were against Trump's Operation Warp Speed depopulation jab, then they quickly changed their minds when Biden flip-flopped and started pushing it?
Some brainwashed rona jab cultists claim that there are no victims of the jab, but person after person will post what the jab did to them, a friend, or a family member on web sites such as Facebook and they'll be lucky if they don't get banned soon after. Posting the truth is “misinformation” don't you know. Awakened sheep might turn into lions, so powerful people will do just about anything to keep the sheep from waking up.
Check out these videos:
If You Got the COVID Shot and Aren't Injured, This May Be Why
Thought Experiment: What Happens After the Jab?
The Truth About Polio and Vaccines
What Is Causing the Mysterious Self-Assembling Non-Organic Clots and Sudden Deaths?
Take a look at my page about the famous demonized medicines called The H Word and Beyond. You might also want to look at my page called Zinc and Quercetin. My sister and I have been taking zinc and quercetin since the summer of 2020 in the hopes that they would scare away the flu and other viruses (or at least make them less severe). Here's one more page to check out: My Sister's Experiences With COVID-19.
Some people appear to have a mental illness because they have a vitamin B deficiency. For example, the wife of a guy I used to chat with online had severe mood swings which seemed to be caused by food allergies or intolerances. She would became irrational, obnoxious, throw tantrums, and generally act like she had a mental illness. The horrid behavior stopped after she started taking a vitamin B complex. I've been taking Jarrow B-Right (#ad) for many years. It makes me much easier to live with. I wonder how many people with schizophrenia and other mental mental illnesses could be helped by taking a B complex once or twice a day with meals (depending on their weight)?
Unfermented soy is bad! “When she stopped eating soy, the mental problems went away.” Fermented soy doesn't bother me, but the various versions of unfermented soy (soy flour, soybean oil, and so on) that are used in all kinds of products these days causes a negative mental health reaction in me that a vitamin B complex can't tame. The sinister encroachment of soy has made the careful reading of ingredients a necessity.
I wouldn't be surprised to find out that unfermented soy is the main reason why so many soy-sucking Democrats in the USA seem to be constantly angry and have a tendency to be violent when hearing words or reading signs that they don't agree with. If I unknowingly eat something with unfermented soy in it, I get irritable, angry, and feel like breaking things, so it's not the placebo effect. Scientists in the future will probably find out that unfermented soy can make people angry. We already know that food sensitivities cause mood changes. It took me over a decade to figure out that unfermented soy was affecting my mood. What if millions of people are having a similar reaction to soy and don't even know it? Some people eat it and drink it every day.
I started taking AyaLife (99% Pure CBD oil) as needed in April of 2020. So far it's the only thing that helps my mood when I've mistakenly eaten something that contains soy. AyaLife is THC-free (non-psychoactive) and is made in the USA. I also put a couple dropper fulls under my tongue before leaving the house or if I just need to calm down.
It's supposedly common knowledge that constantly angry Antifa-types basically live on soy products. What would happen if they stopped eating and drinking soy sludge and also took a B complex every day? Would a significant number of them become less angry? Would AyaLife CBD oil also help?
If you are overweight, have type II diabetes, or are worried about the condition of your heart, check out the videos by Ken D Berry, William Davis, and Ivor Cummins. It seems that most people should avoid wheat, not just those who have a wheat allergy or celiac disease. Check out these books: Undoctored (#ad), Wheat Belly (#ad), and Eat Rich, Live Long (#ad).
Negative ions are good for us. You might want to avoid positive ion generators and ozone generators. A plain old air cleaner is better than nothing, but one that produces negative ions makes the air in a room fresher and easier for me to breathe. It also helps to brighten my mood.
Never litter. Toss it in the trash or take it home. Do not throw it on the ground. Also remember that good people clean up after themselves at home, out in public, at a campsite and so on. Leave it better than you found it.
Climate Change Cash Grab = Bad
Seems like more people than ever finally care about water, land, and air pollution, but the climate change cash grab scam is designed to put more of your money into the bank accounts of greedy politicians. Those power-hungry schemers try to trick us with bad data and lies about overpopulation while pretending to be caring do-gooders. Trying to eliminate pollution is a good thing, but the carbon footprint of the average law-abiding human right now is actually making the planet greener instead of killing it.
Eliminating farms and ranches, eating bugs, getting locked down in 15-minute cities, owning nothing, using digital currency (with expiration dates) that is tied to your social credit score, and paying higher taxes will not make things better and “save the Earth.” All that stuff is part of an agenda that has nothing to do with making the world a better place for the average person. It's all about control, depopulation, and making things better for the ultra-rich. They just want enough peasants left alive to keep things running smoothly.
Watch these two videos for more information:
Charlie Robinson had some good advice about waking up normies (see the link to the video below). He said instead of verbally unloading or being nasty or acting like a bully, ask the person a question. Being nice and asking a question will help the person actually think about the subject.
Interesting videos:
Charlie Robinson Talks About the Best Way to Wake Up Normies
Disclaimer
View this page and any external web sites at your own risk. I am not responsible for any possible spiritual, emotional, physical, financial or any other damage to you, your friends, family, ancestors, or descendants in the past, present, or future, living or dead, in this dimension or any other.
Use any example programs at your own risk. I am not responsible if they blow up your computer or melt your Atari 2600. Use assembly language at your own risk. I am not responsible if assembly language makes you cry or gives you brain damage.