Atari 2600 Programming for Newbies

Session 4: The TIA

By Andrew Davie (adapted by Duane Alan Hahn, a.k.a. Random Terrain)

As an Amazon Associate I earn from qualifying purchases.

Page Table of Contents

Original Session

Last session we were introduced to the link between the 6502 and the TIA. Specifically, how every cycle of 6502 time corresponds to three color clocks of TIA time.






The TIA determines the color of each pixel based on its current 'state', which contains information about the color, position, size and shape of objects such as background, playfield, sprites (2), missiles (2) and ball. As soon as the TIA completes a scanline (228 cycles, consisting of 160 color clocks of pixels, and 68 color clocks of horizontal blank), it begins drawing the next scanline. Unless there is some change to the TIA's internal 'state' during a scanline, then each scanline will be absolutely identical.


Consequently, the absolute simplest way to 'draw' 262 lines for a NTSC frame is to just WAIT for 262 (lines) x 76 (cycles per line) 6502 cycles. After that time, the TIA will have sent 262 identical lines to the TV. There are other things that we'd need to do to add appropriate control signals to the frame, so that the TV would correctly sync to the framebut the essential point here is that we can leave the TIA alone and let it do its stuff. Without our intervention, once the TIA is started it will keep sending scanlines (all the same!) to the TV. And all we have to do to draw n scanlines is wait n x 76 cycles.


It's time to have a little introduction to the 6502.





Binary Numbers

The CPU of the '2600, the 6502, is an 8-bit processor. Basically this means that it is designed to work with numbers 8-binary-bits at a time. An 8-bit binary number has 8 0's or 1's in it, and can represent a decimal number from 0 to 255. Here's a quick low-down on binary…


In our decimal system, each digit 'position' has an intrinsic value. The units position (far right) has a value of 1, the tens position has a value of 10, the hundreds position has a value of one hundred, the thousands position has a value of 1000, etc. This seems silly and obviousbut it's also the same as saying the units position has a value of 10^0 (where ^ means to the power of), the tens position has a value of 10^1, the hundreds position has a value of 10^2, etc. In fact, it's clear to see that position number 'n' (counting right to left, from n=0 as the right-most digit) has a value of 10^n.


That's true of ANY number system, where the 10 is replaced by the 'base'. For example, hexadecimal is just like decimal, except instead of counting 10 digits (0 to 9) we count 16 digits (0 to 15, commonly written 0 1 2 3 4 5 6 7 8 9 A B C D E Fthus 'F' is actually a hex digit with decimal value 15which again, is 1 x 10^1 + 5 x 10^0 ). So in hexadecimal (or hex, for short), the digit positions are 16^n. There's no difference between hex, decimal, binary, etc., in terms of the interpretation of a number in that number system. Consider the binary number 01100101this is (reading right to left) … 1 x 2^0 + 0 x 2^1 + 1 x 2^2 + 0 x 2^3 + 0 x 2^4 + 1x2^5 + 1x2^6 + 1x2^7. In decimal, the value is 101. So, %01100101 = 101 where the % represents a binary number. Hexadecimal numbers are prefixed with a $.We'll get used to using binary, decimal and hex interchangeablyafter all they are just different ways of writing the same thing. When I'm talking about numbers in various bases, I'll include the appropriate prefix when not base-10.


So now it should be easy to understand WHY an 8-bit binary number can represent decimal values from 0 to 255the largest binary number with 8 bits would be %11111111which is 1 x 2^7 + 1 x 2^6 + … + 1 x 2^0.


The 6502 is able to shift 8-bit numbers to and from various locations in memory (referred to as addresses)each memory location is *UNIQUELY* identified by a memory address, which is just like your house street address, or your post-box number. The processor is able to access memory locations and retrieve 8-bit values from, or store 8-bit values to those locations.






The processor itself has just three 'registers'. These are internal memory/storage locations. These three registers (named 'A', 'X', and 'Y') are used for manipulating the 8-bit values retrieved from memory locations and for performing whatever calculations are necessary to make your program do its thing.


What can you do with just three registers? Not much … but a hell of a lot of not much adds up to something! Just like with the TV frame generation, a lot of work is left for the programmer. The 6502 cannot multiply or divide. It can only increment, decrement, add and subtract, and it can only work with 8-bit numbers! It can load data from one memory location, do one of those operations on it (if required) and store the data back to memory (possibly in another location). And out of that capability comes all the games we've ever seen on the '2600. Amazing, innit?


At this stage it is probably a good idea for you to start looking for some books on 6502 programmingbecause that's the ONLY option when programming '2600. Due to the severe time, RAM and ROM constraints, every cycle is precious, every bit is sacred. Only the human mind is currently capable of writing programs as efficiently as required for '2600 development.


That was a bit of a diversionlet's get back to the TIA and how the TIA and 6502 can be used together to draw exactly 262 lines on the TV. Our first task is simply to 'wait' for 76 cycles, times 262 lines.






The simplest way to just 'wait' on the 6502 is just to execute a 'nop' instruction. 'nop' stands for no-operation, and it takes exactly two cycles to execute. So if we had 38 'nop's one after the other, the 6502 would finish executing the last one exactly 76 cycles after it started the first. And assuming the first 'nop' started at the beginning of the scanline, then the TIA (which is doing its magic at the same time) would have just finished the last color clock of the scanline at the same time as the last nop finished. In other words, the very next scanline would then start as our 6502 was about to execute the instruction after the last nop, and the TIA was just about to start the horizontal retrace period (which, as we have learned, is 68 color clocks long).


How do we tell the 6502 to execute a 'nop'? Simply typing nop on a line by itself (with at least one leading space) in the source code is all we have to do. The assembler will convert this mnemonic into the actual binary value of the nop instruction. For example…

; sample code



; end of sample code

The above code shows two nop instructionsthe assembler is case-insensitive. Comments are preceded by semicolons, and occupy the rest of a line after the ; Opcodes (instructions) are mnemonicstypically 3 lettersand must not start at the beginning of a line! We can have only one opcode on each line. An assembler would convert the above code into a binary file containing two bytesboth $EA (remember, a $ prefix indicates a hexadecimal number) = 234 decimal. When the 6502 retrieves an opcode of $EA, it simply pauses for 2 cycles, and then executes the next instruction. The code sequence above would pause the processor for 4 cycles (which is 12 pixels of TIA time, right?!)


But there are better ways to wait 76 cycles! After all, 38 'nop's would cost us 38 bytes of precious ROMand if we had to do that 262 times (without looping), that would be 9432 bytesmore than double the space we have for our ENTIRE game!






The TIA is so closely tied to the 6502 that it has the ability to stop and start the 6502 at will. Funnily enough, at the 6502's will! More correctly, the 6502 has the ability to tell the TIA to stop it (the 6502), and since the TIA automatically re-starts the 6502 at the beginning of every scanline, the very next thing the 6502 knows after telling the TIA to stop the CPU is that the TIA is at the beginning of the very next scanline. In fact, this is the way to synchronize the TIA and 6502 if you're unsure where you're atsimply halt the CPU through the TIA, and next thing you know you're synchronized. It's like a time-warp, or a frozen sleepyou're simply not aware of time passingyou say 'halt' and then continue on as if no halt has happened. It has, but the 6502 doesn't know it.


This CPU-halt is achieved by writing any value to a TIA 'register' called WSYNC. Before we get into reading and writing values to and from 'registers' and 'memory', and what that all means, we'll need to have a look at the memory architecture of the '2600and how the 6502 interacts with memory, including RAM and ROM.







We'll start to explore the memory map (architecture) and the 6502's interaction with memory and hardware, in our next installment.




Other Assembly Language Tutorials

Be sure to check out the other assembly language tutorials and the general programming pages on this web site.


Amazon Stuff


< Previous Session



Next Session >





Session Links

Session 1: Start Here

Session 2: Television Display Basics

Sessions 3 & 6: The TIA and the 6502

Session 4: The TIA

Session 5: Memory Architecture

Session 7: The TV and our Kernel

Session 8: Our First Kernel

Session 9: 6502 and DASM - Assembling the Basics

Session 10: Orgasm

Session 11: Colorful Colors

Session 12: Initialization

Session 13: Playfield Basics

Session 14: Playfield Weirdness

Session 15: Playfield Continued

Session 16: Letting the Assembler do the Work

Sessions 17 & 18: Asymmetrical Playfields (Parts 1 & 2)

Session 19: Addressing Modes

Session 20: Asymmetrical Playfields (Part 3)

Session 21: Sprites

Session 22: Sprites, Horizontal Positioning (Part 1)

Session 22: Sprites, Horizontal Positioning (Part 2)

Session 23: Moving Sprites Vertically

Session 24: Some Nice Code

Session 25: Advanced Timeslicing





Useful Links

Easy 6502 by Nick Morgan

How to get started writing 6502 assembly language. Includes a JavaScript 6502 assembler and simulator.



Atari Roots by Mark Andrews (Online Book)

This book was written in English, not computerese. It's written for Atari users, not for professional programmers (though they might find it useful).



Machine Language For Beginners by Richard Mansfield (Online Book)

This book only assumes a working knowledge of BASIC. It was designed to speak directly to the amateur programmer, the part-time computerist. It should help you make the transition from BASIC to machine language with relative ease.

The Six Instruction Groups

The 6502 Instruction Set broken down into 6 groups.

6502 Instruction Set

Nice, simple instruction set in little boxes (not made out of ticky-tacky).



The Second Book Of Machine Language by Richard Mansfield (Online Book)

This book shows how to put together a large machine language program. All of the fundamentals were covered in Machine Language for Beginners. What remains is to put the rules to use by constructing a working program, to take the theory into the field and show how machine language is done.

6502 Instruction Set

An easy-to-read page from The Second Book Of Machine Language.



6502 Instruction Set with Examples

A useful page from Assembly Language Programming for the Atari Computers.

Continually strives to remain the largest and most complete source for 6502-related information in the world.

NMOS 6502 Opcodes

By John Pickens. Updated by Bruce Clark.



Guide to 6502 Assembly Language Programming by Andrew Jacobs

Below are direct links to the most important pages.


Goes over each of the internal registers and their use.

Instruction Set

Gives a summary of whole instruction set.

Addressing Modes

Describes each of the 6502 memory addressing modes.

Instruction Reference

Describes the complete instruction set in detail.



Stella Programmer's Guide

HTMLified version.



Nick Bensema's Guide to Cycle Counting on the Atari 2600

Cycle counting is an important aspect of Atari 2600 programming. It makes possible the positioning of sprites, the drawing of six-digit scores, non-mirrored playfield graphics and many other cool TIA tricks that keep every game from looking like Combat.



How to Draw A Playfield by Nick Bensema

Atari 2600 programming is different from any other kind of programming in many ways. Just one of these ways is the flow of the program.



Cart Sizes and Bankswitching Methods by Kevin Horton

The "bankswitching bible." Also check out the Atari 2600 Fun Facts and Information Guide and this post about bankswitching by SeaGtGruff at AtariAge.



Atari 2600 Specifications

Atari 2600 programming specs (HTML version).



Atari 2600 Programming Page (AtariAge)

Links to useful information, tools, source code, and documentation.




Atari 2600 programming site based on Garon's "The Dig," which is now dead.



TIA Color Charts and Tools

Includes interactive color charts, an NTSC/PAL color conversion tool, and Atari 2600 color compatibility tools that can help you quickly find colors that go great together.



The Atari 2600 Music and Sound Page

Adapted information and charts related to Atari 2600 music and sound.



Game Standards and Procedures

A guide and a check list for finished carts.




A multi-platform Atari 2600 VCS emulator. It has a built-in debugger to help you with your works in progress or you can use it to study classic games. Stella finally got Atari 2600 quality sound in December of 2018. Until version 6.0, the game sounds in Stella were mostly OK, but not great. Now it's almost impossible to tell the difference between the sound effects in Stella and a real Atari 2600.




A very good emulator that can also be embedded on your own web site so people can play the games you make online. It's much better than JStella.



batari Basic Commands

If assembly language seems a little too hard, don't worry. You can always try to make Atari 2600 games the faster, easier way with batari Basic.



Atari 2600 BASIC

If assembly language is too hard for you, try batari Basic. It's a BASIC-like language for creating Atari 2600 games. It's the faster, easier way to make Atari 2600 games.

Try batari Basic
THE COURAGE TO FACE COVID-19 2000 Mules DVD The Great Awakening

Back to Top



In Case You Didn't Know


Trump's Jab = Bad

Did you know that Trump's rushed Operation Warp Speed rona jab has less than one percent overall benefit? Some people call it the depopulation jab and it has many possible horrible side effects (depending on the lot number, concentration, and if it was kept cold). Remember when many Democrats were against Trump's Operation Warp Speed depopulation jab, then they quickly changed their minds when Biden flip-flopped and started pushing it?


Some brainwashed rona jab cultists claim that there are no victims of the jab, but person after person will post what the jab did to them, a friend, or a family member on web sites such as Facebook and they'll be lucky if they don't get banned soon after. Posting the truth is “misinformation” don't you know. Awakened sheep might turn into lions, so powerful people will do just about anything to keep the sheep from waking up.


Check out these videos:

If You Got the COVID Shot and Aren't Injured, This May Be Why

Thought Experiment: What Happens After the Jab?

The Truth About Polio and Vaccines

What Is Causing the Mysterious Self-Assembling Non-Organic Clots and Sudden Deaths?

Full Video of Tennessee House of Representatives Health Subcommittee Hearing Room 2 (The Doctors Start Talking at 33:28)



H Word and I Word = Good

Take a look at my page about the famous demonized medicines called The H Word and Beyond. You might also want to look at my page called Zinc and Quercetin. My sister and I have been taking zinc and quercetin since the summer of 2020 in the hopes that they would scare away the flu and other viruses (or at least make them less severe). Here's one more page to check out: My Sister's Experiences With COVID-19.



B Vitamins = Good

Some people appear to have a mental illness because they have a vitamin B deficiency. For example, the wife of a guy I used to chat with online had severe mood swings which seemed to be caused by food allergies or intolerances. She would became irrational, obnoxious, throw tantrums, and generally act like she had a mental illness. The horrid behavior stopped after she started taking a vitamin B complex. I've been taking Jarrow B-Right (#ad) for many years. It makes me much easier to live with.



Soy = Bad

Unfermented soy is bad! “When she stopped eating soy, the mental problems went away.” Fermented soy doesn't bother me, but the various versions of unfermented soy (soy flour, soybean oil, and so on) that are used in all kinds of products these days causes a negative mental health reaction in me that a vitamin B complex can't tame. The sinister encroachment of soy has made the careful reading of ingredients a necessity.



Wheat = Bad

If you are overweight, have type II diabetes, or are worried about the condition of your heart, check out the videos by Ken D Berry, William Davis, and Ivor Cummins. It seems that most people should avoid wheat, not just those who have a wheat allergy or celiac disease. Check out these books: Undoctored (#ad), Wheat Belly (#ad), and Eat Rich, Live Long (#ad).



Negative Ions = Good

Negative ions are good for us. You might want to avoid positive ion generators and ozone generators. A plain old air cleaner is better than nothing, but one that produces negative ions makes the air in a room fresher and easier for me to breathe. It also helps to brighten my mood.



Litterbugs = Bad

Never litter. Toss it in the trash or take it home. Do not throw it on the ground. Also remember that good people clean up after themselves at home, out in public, at a campsite and so on. Leave it better than you found it.



Climate Change Cash Grab = Bad

Seems like more people than ever finally care about water, land, and air pollution, but the climate change cash grab scam is designed to put more of your money into the bank accounts of greedy politicians. Those power-hungry schemers try to trick us with bad data and lies about overpopulation while pretending to be caring do-gooders. Trying to eliminate pollution is a good thing, but the carbon footprint of the average law-abiding human right now is actually making the planet greener instead of killing it.


Eliminating farms and ranches, eating bugs, getting locked down in 15-minute cities, owning nothing, using digital currency (with expiration dates) that is tied to your social credit score, and paying higher taxes will not make things better and “save the Earth.” All that stuff is part of an agenda that has nothing to do with making the world a better place for the average person. It's all about control, depopulation, and making things better for the ultra-rich. They just want enough peasants left alive to keep things running smoothly.


Watch these two videos for more information:

CO2 is Greening The Earth

The Climate Agenda



How to Wake Up Normies

Charlie Robinson had some good advice about waking up normies (see the link to the video below). He said instead of verbally unloading or being nasty or acting like a bully, ask the person a question. Being nice and asking a question will help the person actually think about the subject.


Interesting videos:

Charlie Robinson Talks About the Best Way to Wake Up Normies

Georgia Guidestones Explained

The Men Who Own Everything


View this page and any external web sites at your own risk. I am not responsible for any possible spiritual, emotional, physical, financial or any other damage to you, your friends, family, ancestors, or descendants in the past, present, or future, living or dead, in this dimension or any other.


Use any example programs at your own risk. I am not responsible if they blow up your computer or melt your Atari 2600. Use assembly language at your own risk. I am not responsible if assembly language makes you cry or gives you brain damage.


Home Inventions Quotations Game Design Atari Memories Personal Pages About Site Map Contact Privacy Policy Tip Jar