Useful
Inventions
Favorite
Quotes
Game
Design
Atari
Memories
Personal
Pages

Atari 2600 Programming for Newbies

Session 11: Colorful Colors

By Andrew Davie (adapted by Duane Alan Hahn, a.k.a. Random Terrain)

As an Amazon Associate I earn from qualifying purchases.

Page Table of Contents

Original Session

Even our language treats 'color' differentlyhere in Oz we write 'colour' and in the USA they write 'color'. Likewise, '2600 units in different countries don't quite speak the same language when it comes to color.

 

We have already seen why there are 3 variants of '2600 unitsthese variations (PAL, NTSC, SECAM) exist because of the differences in TV standards in various countries. Specifically, the color information is encoded in different ways into the analogue TV signal for each system, and the '2600 hardware is responsible for inserting that color information in the data sent to the TV.

 

 

 

 

 

3 Different Color Palettes

Not only do these different '2600 systems write the color information in different ways, they also write totally different colors! What is one color on a NTSC system is probably NOT the same color on PAL, and almost certainly not the same color on SECAM!

 

Here are some wonderful color charts that show the colors used by each of the systems…

 

http://www.qotile.net/minidig/docs/tia_color.html

 

Below are adapted versions of those color charts…

 

 

NTSC  (128 unique colors)

PAL  (104 unique colors)

SECAM  (8 unique colors)

 

0

2

4

6

8

A

C

E

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

 

0

2

4

6

8

A

C

E

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

 

0

2

4

6

8

A

C

E

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

 

 

Colors are represented on the '2600 by numbers. How else could it be? The color to number correspondence is essentially an arbitrary associationso, for example on a NTSC machine the value $1A is yellowish, on PAL the same color is gray, and on SECAM it is aqua (!). If the same color values were used on a game converted between a NTSC and PAL system, then everything would look very weird indeed! To read the color charts on the page linked to above, form a 2-digit hex number from the hue and the lum values (ie: hue 2, lum 5 -> $25 value -> brown(ish) on NTSC, and as it happens, a very similar brown(ish) on PAL.

 

[Instead of getting your color values from static charts, you can do it the easy way and use the interactive palettes on the TIA Color Charts and Tools page. It includes an NTSC/PAL color conversion tool and Atari 2600 color compatibility tools that can help you quickly find colors that go great together (possibly saving you a lot of time and energy).]

 

 

 

 

 

COLUBK  (Color-Luminosity Background)

We've already played with colors in our first kernel! In the picture section (the 192 scanlines) we had the following code…


       ; 192 scanlines of picture... 



        ldx #0 

        REPEAT 192; scanlines 



          inx 

          stx COLUBK 

          sta WSYNC 



        REPEND 

We should know by now what that 'sta WSYNC' doesand now it's time to understand the rest of it. Remember the picture that the kernel shows? A very pretty rainbow effect, with color stripes across the screen. It's the TIA producing those colors, but it's our kernel telling the TIA what color to show on each line. And it's done with the 'stx COLUBK' line.

 

Remember how the TIA maps to memory in locations 0 - $7F, and that WSYNC is a label representing the memory location of the TIA register (which happens, of course, to be called WSYNC). In similar fashion, COLUBK is a label which corresponds to the TIA register of the same name. This particular register allows us to set the color of the background that the TIA sends to the TV!

 

A quick peek at the symbol table shows…


 COLUBK          0009       (R ) 

In fact, the very best place to look is in the Stella Programmer's guidefor here you will be able to see the exact location and usage of this TIA register. This is a pretty simple one, thoughall we do is write a number representing the color we want (selected from the color charts linked to, above) and the TIA will display this color as the background.

 

 

 

 

NTSC/PAL/SECAM

Remember that it also depends on what system we're running on! If we're doing a PAL kernel, then we will see a different color than if we're doing a NTSC or SECAM kernel. The bizarre consequence of this is that if we change the number of scanlines our kernel generates, the COLORS of everything also change. That's because (if we are running on an emulator or plug a ROM into a console) we are essentially switching between NTSC/PAL/SECAM systems, and as noted these systems send different color information to the TV! It's weird, but the bottom line is that when you choose colors, you choose them for the particular TV standard you are writing your ROM to run on. If you change to a different TV system, then you will also need to rework all the colors of all the objects in your game.

 

 

 

 

A, X, and Y Registers

Let's go back to our kernel and have a bit of a look at what it's doing to achieve that rainbow effect. There's remarkably little code in there for such a pretty effect.

 

As we've learned, the 6502 has just three 'registers'. These are named A, X, and Yand allow us to shift bytes to and from memoryand perform some simple modifications to these bytes. In particular, the X and Y registers are known as 'index registers', and these have very little capability (they can be loaded, saved, incremented and decremented). The accumulator (A) is our workhorse register, and it is this register used to do just about all the grunt-work like addition, subtraction, and bit manipulation.

 

Our simple kernel, though, uses the X register to step a color value from 0 (at the start), writing the color value to the TIA background color register (COLUBK), incrementing X by one each scanline. First (outside the repeat) we have 'ldx #0'. This instruction moves the numeric value 0 into the X register. ld is an abbreviation for 'load', and we have lda, ldx, ldy. st is the similar abbreviation for store, and we have stx sty sta. Inside our repeat structure, we have 'stx COLUBK'. As noted, this will copy the current contents of the x register into the memory location 9 (which is, of course, the TIA register COLUBK). The TIA will then *immediately* use the value we wrote as the background color sent to the TV. Next we have an instruction 'inx'. This increments the current value of the X register by one. Likewise, we have an 'iny' instruction, which increments the y register. But, alas, we don't have an 'ina' instruction to increment the accumulator (!). We are also able to decrement (by 1) the x and y registers with 'dex' and 'dey'.

 

The operation of our kernel should be pretty obvious, now. The X register is initialized with 0, and every scanline it is written to the background color register, and incremented. So the background color shows, scanline by scanline, the color range that the '2600 is capable of. In actual fact, you could throw another 'inx' in there and see what happens. Or even change the 'inx' to 'dex'what do you think will happen? As an aside, it was actually possible to blow up one early home computer by playing around with registers like this (I kid you not!)but you can't possibly damage your '2600 (or emulator!) doing this. Have fun, experiment.

 

 

 

 

The Old Wrap Around

Since we're only doing 192 lines, the X register will increment from 0 to 192 by the time we get to the end of our block of code. But what if we'd put two 'inx' lines in? We'd have incremented the X register by 192 x 2 = 384 times. What would its value be? 384? Nobecause the X register is only an 8-bit register, and you would need 9 bits to hold 384 (binary %110000000). When any register overflowsor is incremented or decremented past its maximum capability, it simply 'wraps around'. For example, if our register had %11111111 in it (255, the maximum 8-bit number) and it was incremented, then it would simply become %00000000 (which is the low 8-bits of %100000000). Likewise, decrementing from 0 would leave %11111111 in the register. This may seem a bit confusing right now, but when we get used to binary arithmetic, it will seem quite natural. Hang in there, I'll avoid throwing the need to know this sort of stuff at you for a while.

 

 

 

 

WSYNC

Now you've had a little introduction to the COLUBK register, I'd just like to touch briefly on the difference apparent between the WSYNC register and the COLUBK register. The former (WSYNC) was a strobeyou could simply 'touch' it (by writing any value) and it would instantly halt the 6502. Didn't matter what value you wrote, the effect was the same. The latter register (COLUBK) was used to send an actual VALUE to the TIA (in this case, the value for the color for the background)and the value written was very much important. In fact, this value is stored internally by the TIA and it keeps using the value it has internally as the background color until it changes.

 

 

 

 

Initialize the TIA Registers

If you think about the consequences of this, then, the TIA has at least one internal memory location which is in an unknown state (at least by us) when the machine first powers on. We'd probably see blackwhich happens to be value 0 on all machines), but you never know. I believe it is wise to initialize the TIA registers to known-states when your kernel first startsso there are no surprises on weird machines or emulators. We have done nothing, so far, to initialize the TIAor the 6502, for that matterand I think we'll probably have a brief look at system startup code in a session real-soon-now.

 

Until then, have a play with the picture-drawing section, and see what happens when you write different values to the COLUBK register. You might even like to change it several times in succession and see what happens. Here's something to try (with a bit of head-scratching, you should be able to figure all this out by now)…


               ; 192 scanlines of picture... 



                ldx #0 

                ldy #0 

                REPEAT 192; scanlines 



                    nop

                    nop

                    nop

                    nop

                    nop

                    nop

                    nop

                    nop

                    nop

                    nop

                     

                    inx 

                    stx COLUBK 



                    nop 

                    nop 

                    nop 



                    dey 

                    sty COLUBK 



                    sta WSYNC 



                REPEND

One caution: as the above code is wrapped inside a repeat structure which creates 192 copies of the enclosed code, we're actually running short of ROM space! With the above code installed, there's only 10 bytes free in our entire ROM! Clearly, using REPEAT in this sort of situation is wasteful, and the code should be written as a loop. We covered looping for scanline draw early onbut because both X and Y registers are in use at the moment, it's a bit more tricky.

 

So for now, we'll just have to accept that we can't add any more codebut at least you can see what effect adding/removing cycles can have on the existing code.

 

Here's a screenshot:

Kernel 11

Here's the .bin file to use with an emulator:

kernel_11.bin

 

 

 

 

Other Assembly Language Tutorials

Be sure to check out the other assembly language tutorials and the general programming pages on this web site.

 

Amazon Stuff

 

< Previous Session

 

 

Next Session >

 

 

 

 

Session Links

Session 1: Start Here

Session 2: Television Display Basics

Sessions 3 & 6: The TIA and the 6502

Session 4: The TIA

Session 5: Memory Architecture

Session 7: The TV and our Kernel

Session 8: Our First Kernel

Session 9: 6502 and DASM - Assembling the Basics

Session 10: Orgasm

Session 11: Colorful Colors

Session 12: Initialization

Session 13: Playfield Basics

Session 14: Playfield Weirdness

Session 15: Playfield Continued

Session 16: Letting the Assembler do the Work

Sessions 17 & 18: Asymmetrical Playfields (Parts 1 & 2)

Session 19: Addressing Modes

Session 20: Asymmetrical Playfields (Part 3)

Session 21: Sprites

Session 22: Sprites, Horizontal Positioning (Part 1)

Session 22: Sprites, Horizontal Positioning (Part 2)

Session 23: Moving Sprites Vertically

Session 24: Some Nice Code

Session 25: Advanced Timeslicing

 

 

 

 

Useful Links

Easy 6502 by Nick Morgan

How to get started writing 6502 assembly language. Includes a JavaScript 6502 assembler and simulator.

 

 

Atari Roots by Mark Andrews (Online Book)

This book was written in English, not computerese. It's written for Atari users, not for professional programmers (though they might find it useful).

 

 

Machine Language For Beginners by Richard Mansfield (Online Book)

This book only assumes a working knowledge of BASIC. It was designed to speak directly to the amateur programmer, the part-time computerist. It should help you make the transition from BASIC to machine language with relative ease.

The Six Instruction Groups

The 6502 Instruction Set broken down into 6 groups.

6502 Instruction Set

Nice, simple instruction set in little boxes (not made out of ticky-tacky).

 

 

The Second Book Of Machine Language by Richard Mansfield (Online Book)

This book shows how to put together a large machine language program. All of the fundamentals were covered in Machine Language for Beginners. What remains is to put the rules to use by constructing a working program, to take the theory into the field and show how machine language is done.

6502 Instruction Set

An easy-to-read page from The Second Book Of Machine Language.

 

 

6502 Instruction Set with Examples

A useful page from Assembly Language Programming for the Atari Computers.

 

 

6502.org

Continually strives to remain the largest and most complete source for 6502-related information in the world.

NMOS 6502 Opcodes

By John Pickens. Updated by Bruce Clark.

 

 

Guide to 6502 Assembly Language Programming by Andrew Jacobs

Below are direct links to the most important pages.

Registers

Goes over each of the internal registers and their use.

Instruction Set

Gives a summary of whole instruction set.

Addressing Modes

Describes each of the 6502 memory addressing modes.

Instruction Reference

Describes the complete instruction set in detail.

 

 

Stella Programmer's Guide

HTMLified version.

 

 

Nick Bensema's Guide to Cycle Counting on the Atari 2600

Cycle counting is an important aspect of Atari 2600 programming. It makes possible the positioning of sprites, the drawing of six-digit scores, non-mirrored playfield graphics and many other cool TIA tricks that keep every game from looking like Combat.

 

 

How to Draw A Playfield by Nick Bensema

Atari 2600 programming is different from any other kind of programming in many ways. Just one of these ways is the flow of the program.

 

 

Cart Sizes and Bankswitching Methods by Kevin Horton

The "bankswitching bible." Also check out the Atari 2600 Fun Facts and Information Guide and this post about bankswitching by SeaGtGruff at AtariAge.

 

 

Atari 2600 Specifications

Atari 2600 programming specs (HTML version).

 

 

Atari 2600 Programming Page (AtariAge)

Links to useful information, tools, source code, and documentation.

 

 

MiniDig

Atari 2600 programming site based on Garon's "The Dig," which is now dead.

 

 

TIA Color Charts and Tools

Includes interactive color charts, an NTSC/PAL color conversion tool, and Atari 2600 color compatibility tools that can help you quickly find colors that go great together.

 

 

The Atari 2600 Music and Sound Page

Adapted information and charts related to Atari 2600 music and sound.

 

 

Game Standards and Procedures

A guide and a check list for finished carts.

 

 

Stella

A multi-platform Atari 2600 VCS emulator. It has a built-in debugger to help you with your works in progress or you can use it to study classic games. Stella finally got Atari 2600 quality sound in December of 2018. Until version 6.0, the game sounds in Stella were mostly OK, but not great. Now it's almost impossible to tell the difference between the sound effects in Stella and a real Atari 2600.

 

 

JAVATARI

A very good emulator that can also be embedded on your own web site so people can play the games you make online. It's much better than JStella.

 

 

batari Basic Commands

If assembly language seems a little too hard, don't worry. You can always try to make Atari 2600 games the faster, easier way with batari Basic.

 

 

Back to Top

 

 

In Case You Didn't Know

 

Trump's Jab = Bad

Did you know that Trump's rushed Operation Warp Speed rona jab has less than one percent overall benefit? Some people call it the depopulation jab and it has many possible horrible side effects (depending on the lot number, concentration, and if it was kept cold). Remember when many Democrats were against Trump's Operation Warp Speed depopulation jab, then they quickly changed their minds when Biden flip-flopped and started pushing it?

 

Some brainwashed rona jab cultists claim that there are no victims of the jab, but person after person will post what the jab did to them, a friend, or a family member on web sites such as Facebook and they'll be lucky if they don't get banned soon after. Posting the truth is “misinformation” don't you know. Awakened sheep might turn into lions, so powerful people will do just about anything to keep the sheep from waking up.

 

Check out these videos:

If You Got the COVID Shot and Aren't Injured, This May Be Why

Thought Experiment: What Happens After the Jab?

The Truth About Polio and Vaccines

What Is Causing the Mysterious Self-Assembling Non-Organic Clots and Sudden Deaths?

Full Video of Tennessee House of Representatives Health Subcommittee Hearing Room 2 (The Doctors Start Talking at 33:28)

 

 

H Word and I Word = Good

Take a look at my page about the famous demonized medicines called The H Word and Beyond. You might also want to look at my page called Zinc and Quercetin. My sister and I have been taking zinc and quercetin since the summer of 2020 in the hopes that they would scare away the flu and other viruses (or at least make them less severe). Here's one more page to check out: My Sister's Experiences With COVID-19.

 

 

B Vitamins = Good

Some people appear to have a mental illness because they have a vitamin B deficiency. For example, the wife of a guy I used to chat with online had severe mood swings which seemed to be caused by food allergies or intolerances. She would became irrational, obnoxious, throw tantrums, and generally act like she had a mental illness. The horrid behavior stopped after she started taking a vitamin B complex. I've been taking Jarrow B-Right (#ad) for many years. It makes me much easier to live with. I wonder how many people with schizophrenia and other mental mental illnesses could be helped by taking a B complex once or twice a day with meals (depending on their weight)?

 

 

Soy = Bad

Unfermented soy is bad!When she stopped eating soy, the mental problems went away.” Fermented soy doesn't bother me, but the various versions of unfermented soy (soy flour, soybean oil, and so on) that are used in all kinds of products these days causes a negative mental health reaction in me that a vitamin B complex can't tame. The sinister encroachment of soy has made the careful reading of ingredients a necessity.

 

I started taking AyaLife (99% Pure CBD oil) as needed in April of 2020. So far it's the only thing that helps my mood when I've mistakenly eaten something that contains soy. AyaLife is THC-free (non-psychoactive) and is made in the USA. I also put a couple dropper fulls under my tongue before leaving the house or if I just need to calm down.

 

It's supposedly common knowledge that constantly angry Antifa-types basically live on soy products. What would happen if they stopped eating and drinking soy sludge and also took a B complex every day? Would a significant number of them become less angry? Would AyaLife CBD oil also help?

 

 

Wheat = Bad

If you are overweight, have type II diabetes, or are worried about the condition of your heart, check out the videos by Ken D Berry, William Davis, and Ivor Cummins. It seems that most people should avoid wheat, not just those who have a wheat allergy or celiac disease. Check out these books: Undoctored (#ad), Wheat Belly (#ad), and Eat Rich, Live Long (#ad).

 

 

Negative Ions = Good

Negative ions are good for us. You might want to avoid positive ion generators and ozone generators. A plain old air cleaner is better than nothing, but one that produces negative ions makes the air in a room fresher and easier for me to breathe. It also helps to brighten my mood.

 

 

Litterbugs = Bad

Never litter. Toss it in the trash or take it home. Do not throw it on the ground. Also remember that good people clean up after themselves at home, out in public, at a campsite and so on. Leave it better than you found it.

 

 

Climate Change Cash Grab = Bad

Seems like more people than ever finally care about water, land, and air pollution, but the climate change cash grab scam is designed to put more of your money into the bank accounts of greedy politicians. Those power-hungry schemers try to trick us with bad data and lies about overpopulation while pretending to be caring do-gooders. Trying to eliminate pollution is a good thing, but the carbon footprint of the average law-abiding human right now is actually making the planet greener instead of killing it.

 

Eliminating farms and ranches, eating bugs, getting locked down in 15-minute cities, owning nothing, using digital currency (with expiration dates) that is tied to your social credit score, and paying higher taxes will not make things better and “save the Earth.” All that stuff is part of an agenda that has nothing to do with making the world a better place for the average person. It's all about control, depopulation, and making things better for the ultra-rich. They just want enough peasants left alive to keep things running smoothly.

 

Watch these two videos for more information:

CO2 is Greening The Earth

The Climate Agenda

 

 

How to Wake Up Normies

Charlie Robinson had some good advice about waking up normies (see the link to the video below). He said instead of verbally unloading or being nasty or acting like a bully, ask the person a question. Being nice and asking a question will help the person actually think about the subject.

 

Interesting videos:

Charlie Robinson Talks About the Best Way to Wake Up Normies

Georgia Guidestones Explained

The Men Who Own Everything

Disclaimer

View this page and any external web sites at your own risk. I am not responsible for any possible spiritual, emotional, physical, financial or any other damage to you, your friends, family, ancestors, or descendants in the past, present, or future, living or dead, in this dimension or any other.

 

Use any example programs at your own risk. I am not responsible if they blow up your computer or melt your Atari 2600. Use assembly language at your own risk. I am not responsible if assembly language makes you cry or gives you brain damage.

 

Home Inventions Quotations Game Design Atari Memories Personal Pages About Site Map Contact Privacy Policy Tip Jar